Source code for graphscope.analytical.app.attribute_assortativity
#!/usr/bin/env python3# -*- coding: utf-8 -*-## Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.## Author: Ning Xin#fromgraphscope.framework.appimportAppAssetsfromgraphscope.framework.appimportnot_compatible_forfromgraphscope.framework.appimportproject_to_simple__all__=["attribute_assortativity_coefficient","numeric_assortativity_coefficient"]
[docs]@project_to_simple@not_compatible_for("arrow_property")defattribute_assortativity_coefficient(graph,attribute):"""Compute assortativity for node attributes. Assortativity measures the similarity of connections in the graph with respect to the given attribute. Args: graph (:class:`graphscope.Graph`): A simple graph. attribute (str): Node attribute key. Returns: r (float): Assortativity of graph for given attribute Notes: This computes Eq. (2) in Ref. [1]_ , (trace(M)-sum(M^2))/(1-sum(M^2)), where M is the joint probability distribution (mixing matrix) of the specified attribute. References: [1] M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003 Examples: .. code:: python >>> import graphscope >>> from graphscope.dataset import load_modern_graph >>> sess = graphscope.session(cluster_type="hosts", mode="eager") >>> g = load_modern_graph(sess) >>> g.schema >>> c = graphscope.attribute_assortativity_coefficient(g, attribute="name") >>> sess.close() """ctx=AppAssets(algo="attribute_assortativity_coefficient",context="tensor")(graph,False)returnctx.to_numpy("r",axis=0)[0]
[docs]@project_to_simple@not_compatible_for("arrow_property")defnumeric_assortativity_coefficient(graph,attribute):"""Compute assortativity for numerical node attributes. Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute. Args: graph (:class:`graphscope.Graph`): A simple graph. attribute (str): Node attribute key. Returns: r (float): Assortativity of graph for given attribute Examples -------- .. code:: python >>> import graphscope >>> from graphscope.dataset import load_modern_graph >>> sess = graphscope.session(cluster_type="hosts", mode="eager") >>> g = load_modern_graph(sess) >>> g.schema >>> c = graphscope.numeric_assortativity_coefficient(g, attribute="name") >>> sess.close() Notes ----- This computes Eq. (21) in Ref. [1]_ , for the mixing matrix of the specified attribute. References ---------- .. [1] M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003 """ctx=AppAssets(algo="attribute_assortativity_coefficient",context="tensor")(graph,True)returnctx.to_numpy("r",axis=0)[0]